Source code for wonambi.ioeeg.fieldtrip

from datetime import datetime
from logging import getLogger
from numpy import around, empty
from scipy.io import loadmat, savemat

from .utils import read_hdf5_chan_name
from ..utils import MissingDependency

try:
    from h5py import File
except ImportError as err:
    File = MissingDependency(err)


lg = getLogger(__name__)
VAR = 'data'


[docs]class FieldTrip: """Basic class to read the data. Parameters ---------- filename : path to file the name of the filename or directory """ def __init__(self, filename): self.filename = filename
[docs] def return_hdr(self): """Return the header for further use. Returns ------- subj_id : str subject identification code start_time : datetime start time of the dataset s_freq : float sampling frequency chan_name : list of str list of all the channels n_samples : int number of samples in the dataset orig : dict additional information taken directly from the header Notes ----- It only reads hdf5 matlab files and the VARiable needs to be called 'data' h5py is necessary for this function """ # fieldtrip does not have this information orig = dict() subj_id = str() start_time = datetime.fromordinal(1) # fake try: ft_data = loadmat(self.filename, struct_as_record=True, squeeze_me=True) if VAR not in ft_data: raise KeyError('Save the FieldTrip variable as ''{}''' ''.format(VAR)) ft_data = ft_data[VAR] s_freq = ft_data['fsample'].astype('float64').item() n_samples = ft_data['trial'].item().shape[1] chan_name = list(ft_data['label'].item()) except NotImplementedError: with File(self.filename) as f: if VAR not in f.keys(): raise KeyError('Save the FieldTrip variable as ''{}''' ''.format(VAR)) s_freq = int(f[VAR]['fsample'].value.squeeze()) chan_name = read_hdf5_chan_name(f, f[VAR]['label']) n_samples = int(around(f[f[VAR]['trial'][0].item()].shape[0])) return subj_id, start_time, s_freq, chan_name, n_samples, orig
[docs] def return_dat(self, chan, begsam, endsam): """Return the data as 2D numpy.ndarray. Parameters ---------- chan : int or list index (indices) of the channels to read begsam : int index of the first sample endsam : int index of the last sample Returns ------- numpy.ndarray A 2d matrix, with dimension chan X samples """ TRL = 0 try: ft_data = loadmat(self.filename, struct_as_record=True, squeeze_me=True) ft_data = ft_data[VAR] data = ft_data['trial'].item(TRL) except NotImplementedError: from h5py import File with File(self.filename) as f: data = f[f[VAR]['trial'][TRL].item()].value.T return data[chan, begsam:endsam]
[docs] def return_markers(self): """Return all the markers (also called triggers or events). Returns ------- list of dict where each dict contains 'name' as str, 'start' and 'end' as float in seconds from the start of the recordings, and 'chan' as list of str with the channels involved (if not of relevance, it's None). TODO ---- How to read markers / events from fieldtrip file """ return []
[docs]def write_fieldtrip(data, filename): """Export data to FieldTrip. Parameters ---------- data : instance of ChanTime data with only one trial filename : path to file file to export to (include '.mat') Notes ----- It saves mat file using Version 6 ('-v7') because it relies on scipy.io functions. Therefore it cannot store data larger than 2 GB. """ n_trl = data.number_of('trial') trial = empty(n_trl, dtype='O') time = empty(n_trl, dtype='O') for trl in range(n_trl): trial[trl] = data.data[trl] time[trl] = data.axis['time'][trl] ft_data = {'fsample': float(data.s_freq), 'label': data.axis['chan'][0].astype('O'), 'trial': trial, 'time': time, 'cfg': 'Converted from wonambi on ' + str(datetime.now()), } savemat(filename, {VAR: ft_data})